

**Entering** 

Algebra 1

&

Honors Algebra 1

## Summer Math Packet

Summer 2020

Students,

As we have completed a unique semester we have decided summer packets are more important than ever, given we had to do half of the spring semester remotely.

Therefore, this packet is to be completed by the first day of school and will be graded for completion this year. We will not have an assessment over the topics in this packet as we have in years past. However, we want you to use this packet as a way to get prepared for the next course.

It is a mistake to do this entire packet at the beginning of the summer. We want these techniques to be relatively fresh in your mind in the fall. If you work a couple of problems a day, the whole packet will be completed in no time. Please show all steps when working through the packet.

As a math department, we hope you take this seriously, as we sincerely wish for you to be successful throughout this next year. Your preparation over the summer will be rewarded in unexpected ways during the year.

Here are some helpful websites to use, if needed:

- www.khanacademy.org
- www.patrickjmt.com
- www.youtube.com to find specific math related topics with accompanying videos

Sincerely,

Fellowship Math Department

#### Evaluating Algebraic Expressions

- I. Substitute the given values for the variables in the expression
- 2. Evaluate the expression using the order of operations
  - Parentheses/Brackets (inside to outside)
  - Exponents
  - Multiplication/Division (left to right)
  - Addition/Subtraction (left to right)

ex: 
$$9x^{2} - 4(y + 3z)$$
  
for  $x = -3$ ,  $y = 2$ ,  $z = 5$   
 $9(-3)^{2} - 4(2 + 3 \cdot 5)$   
 $9(-3)^{2} - 4(2 + 15)$   
 $9(-3)^{2} - 4 \cdot 17$   
 $9 \cdot 9 - 4 \cdot 17$ 

 $81 - 4 \cdot 17$ 

81 - 68 = 13

#### The Distributive Property

- 1. Multiply the number outside the parentheses by each term in the parentheses.
- 2. Keep the addition/subtraction sign between each term.

ex: 
$$5(8x - 3)$$
  
 $5(8x - 3)$   
 $5(8x) - 5(3)$   
 $40x - 15$ 

### Simplifying Algebraic Expressions

- 1. Clear any parentheses using the Distributive Property
- 2. Add or subtract like terms (use the sign in front of each term to determine whether to add or subtract)

ex: 
$$2(3x - 4) - 12x + 9$$
  

$$2(3x - 4) - 12x + 9$$

$$6x - 8 - 12x + 9$$

$$-6x + 1$$

Evaluate each expression for a = 9, b = -3, c = -2, d = 7. Show your work.

| 1. a - cd       | 2. $2b^3 + c^2$    | 3. $\frac{a+d-c}{b}$ | 4. $(a - b)^2 + d(a + c)$ |
|-----------------|--------------------|----------------------|---------------------------|
|                 |                    | Ü                    |                           |
|                 |                    |                      |                           |
|                 |                    |                      |                           |
|                 |                    |                      |                           |
| 5. 4c – (b – a) | $\frac{a}{b}$ - 5a | 7. 2bc + d(12 – 5)   | 8. b + 0.5[8 – (2c + a)]  |
|                 |                    |                      |                           |
|                 |                    |                      |                           |
|                 |                    |                      |                           |
|                 |                    |                      |                           |

Simplify each expression using the Distributive Property.

|              |              | ·           |               |
|--------------|--------------|-------------|---------------|
| 9. 5(2g – 8) | 10. 7(y + 3) | 113(4w – 3) | 12. (6r + 3)2 |
|              |              |             |               |
|              |              |             |               |
|              |              |             |               |

Simplify each expression, showing all work.

| 13. 8(x + 1) - 12x          | 14. 6w – 7 + 12w – 3z | 15. 9n – 8 + 3(2n – 11)  | 16. 3(7x + 4y) - 2(2x + y) |
|-----------------------------|-----------------------|--------------------------|----------------------------|
|                             |                       |                          |                            |
|                             |                       |                          |                            |
|                             |                       |                          |                            |
|                             |                       |                          |                            |
| 17. (15 + 8d)(-5) - 24d + d | 18. $9(b-1)-c+3b+c$   | 19. 20f - 4(5f + 4) + 16 | 20.8(h - 4) - h - (h + 7)  |
|                             |                       |                          |                            |
|                             |                       |                          |                            |
|                             |                       |                          |                            |
|                             |                       |                          |                            |

#### Solving One-Step Equations

- I. Cancel out the number on the same side of the equal sign as the variable using inverse operations (addition/subtraction; multiplication/division)
- 2. Be sure to do the same thing to both sides of the equation!

#### Solving Two-Step Equations

- Undo operations one at a time with inverse operations, using the order of operations in reverse (i.e. undo addition/subtraction before multiplication/division)
- 2. Be sure to always do the same thing to both sides of the equation!

ex: 
$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} - 12 = -9$$

$$\frac{a}{7} + 12 + 12$$

$$7 \times \frac{a}{7} = 3 \times 7$$

$$a = 21$$

#### Solving Multi-Step Equations

- I. Clear any parentheses using the Distributive Property
- 2. Combine like terms on each side of the equal sign
- 3. Get the variable terms on the same side of the equation by adding/subtracting a variable term to/from both sides of the equation to cancel it out on one side
- 4. The equation is now a two-step equation, so finish solving it as described above

ex: 
$$5(2x - 1) = 3x + 4x - 1$$
  
 $10x - 5 = 3x + 4x - 1$   
 $10x - 5 = 7x - 1$   
 $-7x - 7x$   
 $3x - 5 = -1$   
 $+5 + 5$   
 $3x = 4$   
 $x = \frac{4}{3}$ 

Solve each equation, showing all work

| 21. $f - 64 = -23$          | 227 = 2d                          | b .                          | $24. \ 13 = m + 21$        |
|-----------------------------|-----------------------------------|------------------------------|----------------------------|
|                             | 25, 7, 25,                        | $\frac{b}{23} = -6$          |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
| OF EV 2 - 08                | (n) ± 8                           | la la                        | 28 22 - (1) 1 7            |
| 25. $5x - 3 = -28$          | $26.  \frac{\omega + 8}{-3} = -9$ | 27. $-8 + \frac{h}{4} = 13$  | 28. 22 = 6y + 7            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             | 7/ 1 2                            |                              |                            |
| 29. $8x - 4 = 3x + 1$       | 30. $-2(5d - 8) = 20$             | 31. 7r + 21 = 49r            | 32. $-9g - 3 = -3(3g + 2)$ |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
| 33. $5(3x - 2) = 5(4x + 1)$ | 34. $3d - 4 + d = 8d - (-12)$     | 35. $f - 6 = -2f + 3(f - 2)$ | 36. $-2(y-1) = 4y - (y+2)$ |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |
|                             |                                   |                              |                            |

#### Scientific Notation

Standard Form to Scientific Notation: move the decimal after the first non-zero digit and eliminate any trailing zeros. Multiply by 10 to the power equal to the number of places you moved the decimal point. If the original number was greater than 1, the exponent is positive. If the number was less than 1, the exponent is negative.

<u>Scientific Notation to Standard Form</u>: move the decimal point the number of places indicated by the exponent. If the exponent is positive, move the decimal right. If negative, move left.

ex: 0.0000571

0.0000571

Original number < 1, so negative exponent

$$=$$
 5.71 x 10<sup>-5</sup>

ex:  $3.5 \times 10^3$ 

Positive exponent, so move decimal right

#### Negative Exponents & Simplifying Monomials

Zero Exponent: Any number raised to the zero power equals 1

ex:  $y^0 = 1$ 

Negative Exponent: Move the base to the opposite side of the fraction line and make the exponent positive

ex:  $x^{-4} = \frac{1}{x^4}$ 

Monomial x Monomial: Multiply the coefficients and add the exponents of like bases

ex:  $(4x^3)(2x^5) = 8x^8$ 

<u>Monomial</u> : Divide the coefficients and subtract the exponents of like bases

ex:  $\frac{a}{a^6} = a^{-5} = \frac{1}{a^5}$ 

<u>Power of a Monomial</u>: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents

ex:  $(-2fg^5)^3 = -8f^3g^{15}$ 

<u>Power of a Quotient</u>: Raise each base (including the coefficient) to that power. If a base already has an exponent, multiply the two exponents

 $ex: \left(\frac{5d^3}{c}\right)^2 = \frac{25d^6}{c^2}$ 

# Convert each number to Scientific Notation. 37. 67,000,000,000 38. 0.0009213 40. 3,201,000,000,000,000 39. 0.00000000004 Convert each number to Standard Form. 41. 5.92 x 10<sup>-5</sup> 42. I.I x 10<sup>7</sup> 43. 6.733 x 10<sup>-8</sup> 44. $3.27 \times 10^{2}$ Simplify each expression. Write your answers using only positive exponents. 47. f<sup>5</sup>·f<sup>3</sup> 45. $W^{-9}$ 52. 4r<sup>6</sup> · 3r · 2r<sup>2</sup> 49. $(a^5)^2$ 51. Z<sup>0</sup> 55. $(g^4h)^2 \cdot (2g^3h^{-1})^2$ 56. (6a)° $\frac{1}{58.} \left( \frac{\omega^5 x^{-2} y}{\omega^2 x y^4} \right)^{-1}$

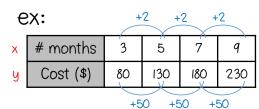
57.  $(-3n^2k^4)^2$ 

60.  $(1.5 \cdot 10^{-6}) \cdot (4 \cdot 10^{9})$ 

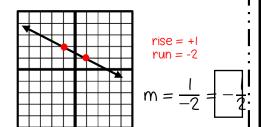
#### Slope & Rate of Change

Finding the Slope Given Two Points: Use the coordinates from the points in the slope formula:

Slope (m) = 
$$\frac{y_2 - y_1}{x_2 - x_1}$$


<u>Finding the Rate of Change From a Table</u>: Determine the amount the dependent variable (y) is changing and the amount the independent variable (x) is changing.

Rate of Change = 
$$\frac{\text{change in y}}{\text{change in x}}$$


<u>Finding the Slope From a Graph</u>: Choose 2 points on the graph. Find the vertical change (rise) and horizontal change (run) between the 2 points and write it as a fraction  $\frac{\text{rise}}{\text{run}}$ . (Up is positive, down is negative, right is positive, and left is negative).

ex: 
$$(4, -2)$$
,  $(-3, 8)$ 

$$m = \frac{8 - (-2)}{-3 - 4} = \frac{10}{-7} = -\frac{10}{7}$$

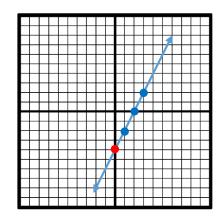


$$m = \frac{50}{2} = 25 \text{ dollars/month}$$



#### Graphing Linear Equations

Slope-Intercept Form: y = mx + bslope y-intercept


How To Graph:

- I. Make a point on the y-axis at the y-intercept.
- Use the slope to determine where to make the next point. The numerator tells you the rise (how far up/down) and the denominator tells you the run (how far right/left) to make the next point.
- 3. Repeat to make more points and then connect the points with a line.

ex: y = 2x - 4

y-intercept: -4

slope:  $2 = \frac{2}{1} \leftarrow \frac{\text{rise}}{\text{run}}$ 



Find the slope of the line that passes through the points. Show your work.

61. (-5, 3), (2, 1)

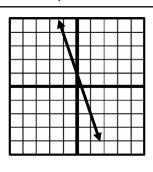
62. (8, 4), (11, 6)

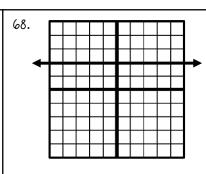
63. (9, 3), (9, -1)

64. (-4, -2), (-6, 4)

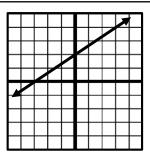
Find the rate of change. Show your work.

65.


| Number of Hours     | 3   | 6   | 9   | 12  |
|---------------------|-----|-----|-----|-----|
| Distance (in miles) | 135 | 270 | 405 | 540 |

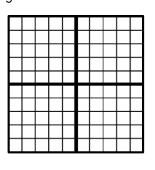

66.

| Number of Weeks | 1   | 3   | 5   | 7   |
|-----------------|-----|-----|-----|-----|
| Pounds          | 173 | 169 | 165 | 161 |

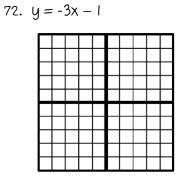

Find the slope of the line.

67.

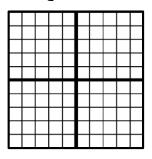




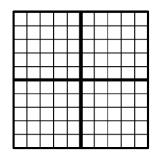

69.



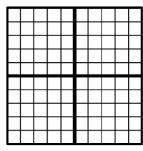

Graph the line.


70. y = -x - 3




71. 
$$y = \frac{1}{3}x + 2$$




$$y = -\frac{3}{2}x - 2$$



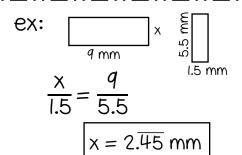
74. y = 2x + 1



$$y = \frac{1}{4}x$$



#### Solving Proportions

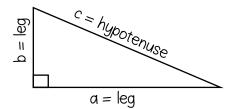

- 1. Set the two cross-products equal to each other
- ex:  $\frac{m}{4} = \frac{3}{5}$

2. Solve the equation for the variable

 $\frac{5m}{5} = \frac{12}{5}$ m = 2.4

#### Similar Figures

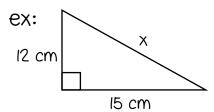
- 1. To find a missing side length, set up a proportion, matching up corresponding sides.
- 2. Solve the proportion using the steps above.




#### The Pythagorean Theorem

\*\*\* The Pythagorean Theorem applies to right triangles only \*\*

The sides next to the right angle (a  $\mathcal{E}$  b) are legs


The side across from the right angle (c) is the hypotenuse



Pythagorean Theorem:  $a^2 + b^2 = c^2$ 

To find the hypotenuse: add the squares of the legs and then find the square root of the sum

To find a leg: subtract the square of the given leg from the square of the hypotenuse and then find the square root of the difference



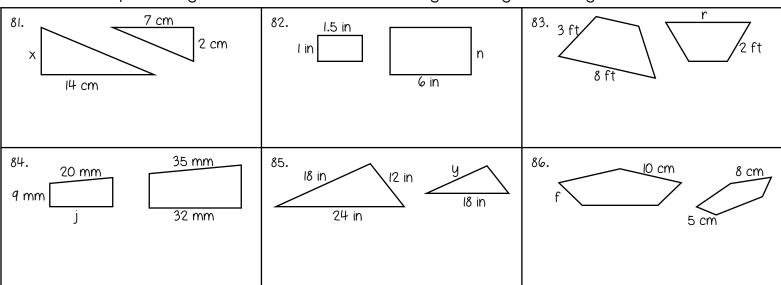
x is the hypotenuse

$$12^2 + 15^2 = x^2$$

$$144 + 225 = x^2$$

$$369 = x^2$$

$$x = \sqrt{369} \approx 19.2 \text{ cm}$$


ex: 
$$a = ?$$
,  $b = 3$ ,  $c = 6$   
a is a leg  
 $a^2 + 3^2 = 6^2$   
 $a^2 + 9 = 36$ 

$$a^2 = 36 - 9 = 27$$
  
 $a = \sqrt{27} \approx 5.2$ 

Solve each proportion, showing all work.

| $\frac{6}{7} = \frac{4}{m}$ | $\frac{12}{5} = \frac{k}{3}$ | $\frac{78.}{7} = \frac{8}{2}$ | $\frac{79.}{n} = \frac{9}{36}$ | $\frac{80.}{21} = \frac{3}{c}$ |
|-----------------------------|------------------------------|-------------------------------|--------------------------------|--------------------------------|

Assume each pair of figures is similar. Find the missing side length, showing all work.



Find the missing side length in each right triangle to the nearest tenth. Show your work!

| This the missing side length in each right thangle to the near est terms. Onow your work; |                        |                          |                                 |  |
|-------------------------------------------------------------------------------------------|------------------------|--------------------------|---------------------------------|--|
| 87. a = 6, b = 8, c = ?                                                                   | 88. a=?, b=9cm, c=13cm | 89. a = 7, b = ?, c = 14 | 90. a = 14 in, b = 14 in, c = ? |  |
| 91. 3 5 x                                                                                 | 92.<br>X 10 mm         | 93. 7 in x               | 94.<br>20 18                    |  |
| 95. <u>15</u>                                                                             | 96. 104 in 52 in x     | 97. 35 ft 10 ft          | 98. × 24 cm 20 cm               |  |

Determine whether or not you can form a right triangle from the given side lengths. Explain.

| 99. 18, 22, 26 | 100. 5, 12, 13 |
|----------------|----------------|
|                |                |
|                |                |